形态学变换

膨胀与腐蚀

形态学变化是基于图像形状的一些简单操作。操作对象一般是二值图像,需要两个输入,一个是我们的原图,另一个是3x3的结构元素(内核),决定了膨胀操作的本质。常见的操作是图像的膨胀和腐蚀。以及他们的进阶操作注入Opening、Closing、Gradient等等。(参考

结构元素的形状

MORPH_RECT 矩形
MORPH_ELLIPSE 椭圆形
MORPH_CROSS 十字型

膨胀Dilation

跟卷积操作非常类似.有图像A和3x3的结构元素,结构元素在A上进行滑动.计算结构元素在A上覆盖的最大像素值来替换当前结构元素对应的正中间的元素

膨胀的作用:

  1. 对象边缘增加一个像素
  2. 使对象边缘平滑
  3. 减少了对象与对象之间的距离

示例代码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
/**
 * 膨胀: 用内核中最大的值填充当前像素点的值
 */
void dilation(){

    Mat img = imread("../assets/morph-j.jpg",IMREAD_GRAYSCALE);
    imshow("src",img);

    Mat dst;

    Mat kernel = getStructuringElement(MORPH_RECT,Size(5,5));
    dilate(img,dst,kernel);

    // 将膨胀之后的图像显示出来
    imshow("dilation",dst);
}

腐蚀Erosion

腐蚀和膨胀过程类似,唯一不同的是以覆盖的最小值替换当前的像素值

侵蚀的作用:

  1. 对象边缘减少一个像素
  2. 对象边缘平滑
  3. 弱化了对象与对象之间连接

示例代码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
/**
 * 腐蚀: 用内核覆盖的最小像素值替换当前像素值
 */
void erosion(){
    Mat img = imread("../assets/morph-j.jpg",IMREAD_COLOR);
    imshow("src",img);


    Mat dst;
    Mat kernel = getStructuringElement(MORPH_RECT,Size(5,5));

    // 腐蚀
    erode(img,dst,kernel);
    // 显示图像
    imshow("dst",dst);
}

开操作Opening

先腐蚀,后膨胀,主要应用在二值图像或灰度图像

先腐蚀: 让当前窗口中最小的颜色值替换当前颜色值

后膨胀: 让当前窗口中最大的颜色值替换当前颜色值

作用:

  1. 一般用于消除小的干扰或噪点(验证码图的干扰线)
  2. 可以通过此操作配合结构元素,提取图像的横线和竖线

示例代码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
/**
 * 开操作: 先腐蚀,再膨胀
 */
void openning(){
    Mat img = imread("../assets/morph-opening.jpg",IMREAD_COLOR);
    imshow("src",img);


    Mat dst;
    Mat kernel = getStructuringElement(MORPH_RECT,Size(5,5));

    morphologyEx(img,dst,MORPH_OPEN,kernel);

    imshow("dst",dst);
}

去除验证码上面的干扰线

闭操作Closing

先膨胀,后侵蚀

一般用于填充内部缝隙

示例代码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
/**
 *  先膨胀再腐蚀
 */
void closing(){
    Mat img = imread("../assets/morph-closing.jpg",IMREAD_COLOR);
    imshow("src",img);

    // 定义结构元素
    Mat dst;
    Mat kernel = getStructuringElement(MORPH_RECT,Size(3,3));

    // 进行形态学变换
    morphologyEx(img,dst,MORPH_CLOSE,kernel);
    imshow("dst",dst);
}

小结

形态学变换中还有一些其它的变换,大家可以自行尝试查看执行效果

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
开运算
    先对图像腐蚀,再膨胀
    dst=open(src,element)=dilate(erode(src,element))

闭运算
    先膨胀再腐蚀
    dst=close(src,element)=erode(dilate(src,element))

形态梯度
    膨胀图和腐蚀图之差
    dst=morph_grad(src,element)=dilate(src,element)erode(src,element)

顶冒
    原图和开运算图之差
    dst=tophat(src,element)=srcopen(src,element)

黑冒
    闭运算结果和原图之差
    dst=blackhat(src,element)=close(src,element)src