交通杆识别
校准¶
1.启动gazebo节点
roslaunch turtlebot3_gazebo turtlebot3_autorace_2020.launch
2.启动键盘控制移动到标志前
roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch
TB3移动到位置后,关闭键盘控制节点
3.启动相机的内标定
roslaunch turtlebot3_autorace_camera intrinsic_camera_calibration.launch
4.启动相机的外标定
roslaunch turtlebot3_autorace_camera extrinsic_camera_calibration.launch
5.启动交通灯检测校准节点
roslaunch turtlebot3_autorace_detect detect_level_crossing.launch mode:=calibration
6.加载交通杆控件
roslaunch turtlebot3_autorace_core turtlebot3_autorace_mission.launch
7.打开可视化界面
rqt
- 点击rqt左上角菜单栏
Plugins
->Cisualization
->Image view
,依次添加三个窗口且分别订阅/detect/image_level_color_filtered/compressed
和/detect/image_level/compressed
两个主题
8.打开rqt_reconfigure工具
rosrun rqt_reconfigure rqt_reconfigure
- 点击
detect_level_crossing
后调整参数来过滤红色,实际需要的过滤效果可以参考上图
- 新终端,将调整好的值写入
turtlebot3_autorace_detect/param/level/
的level.yaml
文件中
---
detect:
level:
red:
hue_l: 0
hue_h: 179
saturation_l: 24
saturation_h: 255
lightness_l: 207
lightness_h: 255
测试¶
1.关闭所有终端,打开gazebo
roslaunch turtlebot3_gazebo turtlebot3_autorace_2020.launch
2.启动键盘控制节点,移动到标志前
roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch
TB3移动到位置后,关闭键盘控制节点
3.启动相机内标定
roslaunch turtlebot3_autorace_camera intrinsic_camera_calibration.launch
4.启动交通杆检测单独任务
roslaunch turtlebot3_autorace_core turtlebot3_autorace_core.launch mission:=level_crossing
5.加载gazebo任务
roslaunch turtlebot3_autorace_core turtlebot3_autorace_mission.launch
6.设置decided_mode为2
rostopic pub -1 /core/decided_mode std_msgs/UInt8 "data: 2"